

室戸海洋深層水 株式会社

TEL: 0887-22-3202 FAX: 0887-23-3204

E-mail: komatsu@e-mks.ip URL: http://www.e-mks.jp/ 設 立:1998年(平成10年)2月23日 社員数:18名 資本金:5.900万円

企業 平成10年の会社設立以来、室戸ブランドの海洋深層水の優位性を最大限に活かし、体に優しく安全で安心できる製品の開発、概要 製造、販売している。

ものづくり技術:成長分野型(環境・エネルギー)

設備投資のみ

室戸海洋深層水製塩工場の高効率化と 化石燃料の削減を目的とした設備投資

昨今の化石燃料の高騰を受け、製造コストが上昇し市場競争力が低下してきていた。本事業で ヒートポンプ方式減圧濃縮装置を導入することにより、化石燃料費の削減を含めたコスト削減に よる徹底した省エネルギー対策を進めるとともに、売上高の増加を図り、利益を上げることで会 社経営の安定を目指す。

事業取組みの経緯

会社設立当初は流下ネット方式と天火による製造 (太陽光と風で水分を飛ばし塩分濃度を上げた後、 蒸気釜で塩分濃度を24%まで上げ、硫酸カルシウム を析出させた上澄みを取り出す製塩方法) であった ため、製造量が少なく、製造日数は約1ヶ月近くか かっていた。また、化石燃料を大量に消費するため 製造コストも高かった。会社を継続させ、更に発展 させるためには、エネルギー費用を中心とした製造 コストの削減と生産性の向上が必須となった。

当社は製塩に際し、2段階濃縮を採用している。 蒸気釜全体にスケール(硫酸カルシウム)が付着す ることによる蒸気釜の熱伝導率の低下と濃縮時間の 延長を防ぐため、一次濃縮でスケールを除去した上 で二次濃縮を行っている。本事業実施前は一次濃縮 に1トン濃縮水蒸気釜3台と製塩用に530L蒸気釜 3台の合計6台で製塩をしていた。一次濃縮の1ト ン濃縮用蒸発釜は、事業所全体の燃料使用量の6割 を占めており、一次濃縮工程の改善と対策が急務と なっていた。

本事業以前から高知工科大学と共同研究した結果 により、濃縮工程に減圧真空装置を使用すれば、大 幅な燃料削減が可能であることは実証済みであった。 そこで、環境に優しく市場競争力のある製塩システ ムの実現を目的として更に研究をし、一次濃縮工程 から化石燃料を使用しないことで、排熱が「0」と なる高効率のヒートポンプ方式減圧濃縮装置を導入 することとした。

実施内容

【設備導入前の検討】

①蒸気釜のスケール除去対策

高知工科大学との共同研究により、膜技術を活用 して、スケールの主成分である硫酸カルシウム (CaSO4) から硫酸イオン (SO4) の除夫技術開発 に成功した。

②RO膜による海水濃縮

海水濃縮用蒸気釜の前段に逆浸透膜(RO膜)を 導入したことで、エネルギーを使用することなく蒸 気釜に供給する海水塩分濃度を3%から10%まで濃 縮可能となった。

【設備導入】

ヒートポンプ方式は元々、産業廃棄物を処理する 過程で用いられていたものであった。今まで食品、 特に製塩に応用されなかったのは、塩を作る過程で スケールが発生し石膏として装置に付着し取れなく なるという問題があったからである。

当社が工科大学と研究し蓄積してきた基礎データ

ヒートポンプ方式減圧濃縮装置

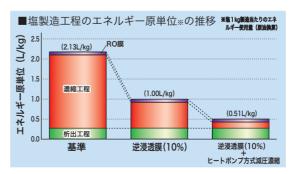
を開示しながら、高知工科大学と電力会社、機器 メーカーと協力し、従来の海水濃縮工程用の蒸気釜 から電気式のヒートポンプ方式減圧濃縮装置に転換 するための取り組みを実施した。

①濃縮海水の成分維持

バッチ処理の濃縮用蒸気釜から連続処理のヒート ポンプ方式減圧濃縮装置に転換した場合、転換前後 で濃縮海水の成分が変化して製品品質に影響が出る 可能性があることから、メーカーの試験機にて連続 濃縮テストを実施し成分分析を行った結果、成分の 変化は無く連続処理でも濃縮可能であることを実証 した。

②スケールの確実な除去

転換前の蒸気釜の海水加熱部は全て平らであるが、 ヒートポンプ方式減圧濃縮装置の海水加熱部は密集 したパイプ状であり、スケールが付着しやすい構造 となっている。食品製造業としてサニタリー性の確 保は必須であることから、食品製造機器専用の洗浄 剤を用いた機器洗浄試験をメーカー試験機にて実施。 容易で確実なスケール除去が可能であることを実証


以上のような過程を経て、完全に当社オリジナル の装置が開発された。

事業取組みの成果

海水濃縮用蒸気釜の前段の逆浸透膜(RO膜)の 導入により、エネルギーを使用することなく海水濃 度を10%にまで濃縮可能になった。それに加え、逆 浸透膜でスケール成分の硫酸イオン (SO4) を除去 することにより、その後、装置に付着する時点では 炭酸カルシウムになっている。付着した場合も水を かけるなどで簡単に洗浄できる。これらの研究成果 により、ヒートポンプ方式減圧濃縮装置を導入する ことができた。

濃縮工程で水分を蒸発させるために大量投入され ていた熱エネルギーは、廃熱を利用することで濃縮 工程の大幅な省エネルギー化を実現した。

廃熱は蒸気の形態で存在するので、圧縮機に吸い 込み、再圧縮を行う事で比較的容易に必要な温度ま で昇温することができる。再圧縮の際、減圧に保つ ことで蒸発温度を従来の120℃から60℃に低温化で きるので、再圧縮に必要なエネルギー量を少なくす

ることができる。

また、ヒートポンプ方式減圧濃縮装置を導入した ことで、従来の蒸発釜3台(計2.4トン/日)に対 して、濃縮水の処理能力を4トン/日まで増やすこ とができた。生産効率が上がることで、製造量が 1.7倍にアップし、安定的に製品を供給できる体制 ができた。燃料コスト削減と同時に生産拡大も実現 し、両方を合わせることで更にコストダウンを図り、 ほぼ計画通りの数値を達成した。

本事業の設備導入により人材を商品開発や営業な ど生産以外に当てることができ、新たな雇用にも繋 げることができた。

製品内容

会社設立当時から変わらず、海洋深層水だけを使 用した無添加の自然塩、にがりを製造している。海 洋深層水のミネラル成分をそのままバランス良く含 有した類を見ない製品であり、自社内の品質管理室 を有効活用し「安心、安全」な商品。

今後の活動予定

平成28年度は、省エネ大賞にエントリーをしてい る。今後は、濃縮工程の次にエネルギー使用量の多 い析出工程についても高知工科大学と基礎調査を実 施し、概ね5年後を目処にヒートポンプ方式減圧晶 析装置の導入を目指す。その後、使用電力の3分の 1程度を自家発電で賄えるよう、ソーラーパネルの 導入も視野に入れており、更なるコスト削減を目指

濃縮から晶析まで一貫した仕組みを作り上げるこ とで、取水から製品まで外気に触れることないフル オートメーションの生産ラインが実現する。安全性 の向上はもちろんのこと、機械化することで成分が 安定し、品質向上も狙える。

販売計画

平成28年7月より関西圏で営業をおこなっており、 続いて、関東の営業も視野にいれている。営業商品 の開発についても、本年度は焼塩の商品化を進めて おり、商品開発と機械化が出来れば早期に営業を本 格化したいと考えている。

37 36